CS 383

Exam 2 Solutions

You only need to answer the first 5 questions. \#6 is a bonus question to give you something to do if you finish early. Questions (1) through (5) are worth 20 points each.

1. Here is a list of languages. Which of these are context-free? You don't need to give a justification for your answer, so you can guess randomly and have a $1 / 32$ chance of getting them all right...
a. Strings of $0 \mathrm{~s}, 1 \mathrm{~s}$, and 2 s with more 1 s than 0 s and more 2 s than 1 s
b. Strings of 0 s and 1 s with odd length that have a 1 as the center digit. For example, 00100,11111 , and 11101 are all in this language.
c. $\left\{0^{n} 1^{n} 0^{m} 1^{m} \mid n, m>=0\right\}$
d. $\left\{0^{n} 1^{m} 0^{m} 1^{n} \mid n, m>=0\right\}$
e. $\left\{0^{n} 1^{m} 0^{n} 1^{m} \mid n, m>=0:\right\}$
(a) is not CF: $\mathrm{z}=0^{\mathrm{p}} 1^{\mathrm{p}+1} 2^{\mathrm{p}+2}$ is not pumpable within ths language
(b) is CF: Make a PDA with 2 states. In the first state push X whenever you see a 0 or 1. Nondeterminitically on a 1 go to the second state that pops an X whenever it sees a 0 or 1.
(c) is CF: it is $L_{1} L_{2}$ where L_{1} and L_{2} are both the CF language $\left\{0^{n} 1^{n}\right\}$
(d) is CF: Push 0 s then push 1 s , then on 0 s pop 1 and finally on 1 s pop 0 s .
(e) is not CF. The string $0^{p} 1^{p} 0^{p} 1^{p}$ is not pumpable.
2. Here is a grammar. Draw a parse tree for the derivation of bbbaaa
$A=>B b A a \mid a a$
$B=>B B|b| \varepsilon$

3. Construct a PDA that accepts by final state the language $\left\{1^{n} 2^{m} 3^{n+2 m} \mid n, m>=0\right\}$

4. Give a careful proof that the language $\left\{1^{n} 2^{m} 3^{n^{*} m} \mid n, m>=0\right\}$ is not context-free.

Suppose this language is context-free; let p be its pumping constant. Consider the string $z=1^{p} 2^{p} 3^{p^{*} p}$. Let $z=u v w x y$ be any pumping decomposition of z, with $|v w x|<=p$. vwx can't contain both 1 s and 3 s . Changing 1 s or 2 s without changing 3 s won't keep us in the language; neither will changing $3 s$ without changing 1 s or 2 s . The only possibility is for vwx to contain both 2 s and 3 . Note that to be in our language, if there are p 1 s each 2 must correspond to $p 3 s$. If we pump once: $u v^{2} w x^{2} y$ has $p 1 s$, some additional $2 s$ and fewer than p additional $3 s$. Since it does not have $p 3 s$ for every 2 , it is not in the language. Our string z is thus not pumpable, so the language is not context-free.
5. Construct a Turing Machine that accepts the language $\left\{1^{n} 2^{n} 3^{n} \mid n>0\right\}$

Here is the idea. In one pass from S to V we overwrite a 1 , a 2 , and a 3 with X s. In node V we go back to the very beginning of the string and return to node S . If in node S we find that the entire string has been overwritten with Xs we transition to node W and accept the input.

